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Progressive radial cross-waves in a deep, periphractic wavetank are investigated on 
the assumption that the vertical component of the capillary force vanishes at the 
wavemaker. For a cylindrical wavemaker, the envelope of the radial cross-wave is 
shown to obey an evolution equation that differs from the cubic Schrodinger 
equation only in the presence of a factor 1/R in the cubic term, where R is a slow 
radial variable. Weak, linear damping is incorporated, and the transition conditions 
at which the directly forced concentric wave loses stability to a parametrically forced 
cross-wave are obtained. The cylindrical problem is used to develop an asymptotic 
approximation to the corresponding problem for a spherical wavemaker. The theory 
is compared with the experiments of Tatsuno, Inoue & Okabe (1969). The theoretical 
predictions of resonant wavenumbers are consistent with their data, but the 
corresponding predictions of wavemaker amplitudes, on the assumption of linear 
damping that is confined to an inextensible (fully contaminated) free-surface 
boundary layer, are an order of magnitude smaller than those observed by Tatsuno 
et aE. (1969). This underprediction of the transition amplitudes may be due to 
nonlinear phenomena - in particular, nonlinear effects at the contact line and 
‘undersurface flows’ (Taneda 1991) -that are not comprehended by the theoretical 
model. 

1. Introduction 
Radial cross-waves were discovered by Faraday in 1831 (see Martin 1932). He 

subjected a partially immersed cork to a vertical vibration and observed that ‘So 
soon as the cork touched the water a beautiful store of [radial] ridges formed all 
round it, running out 2, 3 or even 4 inches’. They have since been studied 
experimentally by Schuler (1933), Tatsuno, Inoue & Okabe (1969, hereinafter 
referred to  as TIO), and Taneda (1991), who observed the transition from outwardly 
propagating concentric waves to radially decaying cross-waves and confirmed 
Faraday’s observation (in a related context) that, whereas the concentric waves have 
the same frequency as the wavemaker, the cross-waves have half that frequency. 
They have been treated analytically by Becker & Miles (1991, hereinafter referred to 
as I), who considered standing waves in a circular annulus. They are closely related 
to cross-waves in a rectangular tank, which also were discovered by Faraday and 
have been reviewed by Miles & Henderson (1990). 

T I 0  measured the transition (from concentric waves to cross-waves or vice versa) 
amplitudes a (in the present notation) of the vertical oscillation of spheres of four 
different diameters (2r, = 3 , 4 , 5 , 6  cm) versus the transition frequencies of the cross- 
waves. They then calculated the corresponding wavenumbers k from the linear 
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dispersion relation on the assumption that the surface tension was 74 dynes/cm and 
found that their data for the concentric + radial and radial + concentric transitions 
collapsed onto two distinct curves, along which a/r,  falls from 0.3 to 0.005 as kr, 
increases from 2 to 32. They also found that the azimuthal wavenumber m of the 
radial cross-wave is approximated by m - 1.2kr1 over the range of their data. 

The direct formulation of the radial cross-wave problem for a spherical wavemaker 
does not permit separation of variables ; accordingly, we first consider a cylindrical 
wavemaker with the prescribed, radial displacement 

r = r,+X(z,t), x = uf(kz)sin2wt (0 < @ < 2n), ( 1 . 1 ~ 6 ,  b)  

where ( r ,  $, z )  are cylindrical polar coordinates (@ replaces 6 in I §2), on the 
assumptions (in addition to that of irrotational motion) that 

ka s 4 1,  kd $ 1 ,  k2T/g = k21E h = 0 ( 1 ) ,  (1.2a-c) 

0 2 - w ;  = O(eZw2), lA-&I 9 €2, (1.2d, e )  

where k is the wavenumber of the radial cross-wave, d is the fluid depth, T is the 
kinematic surface tension, I ,  = (T/g): is the capillary length, and 

w; gk+Tk3 = gk(1  + A ) .  (1.3) 
The assumption (1.2 e )  rules out a Wilton-type resonance between the cross-wave 
and its second harmonic. We then use the solution of this cylindrical problem for 
kr, 9 1 to obtain an asymptotic approximation to the solution of the corresponding 
problem for a spherical wavemaker of radius r l ,  the centre of which executes the 
vertical oscillation z = -a sin 2wt. 

The linearized, axisymmetric response of the liquid in the periphractic domain 
bounded by the cylindrical wavemaker (1.1) and a free surface z = c is determined by 
an extension of Havelock's (1929) gravity-wave solution to capillary-gravity waves 
on the (conventional) assumption that the vertical component of the capillary force 
vanishes at  the contact line.? This solution is stable for sufficiently small a and o, 
but, as either a is increased with w fixed or conversely, i t  loses stability to a radial 
cross-wave. We pose the cross-wave in the form 

where A is a dimensionless, slowly varying, complex amplitude, R = 2skr and 
7 = E2wt (cf. I, where 7 = swt) are slow variables, Re denotes the real part of, J, and Y, 
are Bessel functions of order m, and the primes signify differentiation with respect to 
the argument. 

Progressive radial cross-waves resemble progressive cross-waves in a rectangular 
wavetank, but there are significant differences. For a rectangular wavetank, the 
linear approximation to the progressive cross-wave is given by (cf. Miles & Becker 
1988) 

( 1  *5 )  

where X = 2skx, r = s%t, b is the channel breadth, x is the down-channel coordinate 
and y is the cross-channel coordinate. Comparing (1.4) and (1.5) with ( r ,  R, $) and (5, 

t The axisymmetric velocity potential for the spherical wavemaker in the asymptotic limit 
kr, co is independent of the contact line condition (see f 7), but this may not hold for the cross-wave. 
The solution for the cylindrical wavemaker with a prescribed wave slope (zero in the present case) 
at the contact line is given by Rhodes-Robinson (1971b). 

cl = 2/2sk-' Re [ A  (X, 7 )  ePiwt] cos k, y (k, = mn/b), 
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X, x y / b )  as ordered counterparts, we observe that (1.5) is independent of x, whereas 
(1.4) depends on both r and R.  Both (1.4) and (1.5) imply no net energy flux across 
surfaces parallel to the wavemaker, neither of them satisfies a radiation condition 
(there is no source of energy), and both have infinite energy in this first approximation 
(in which X ,  R and T are fixed). This last difficulty is resolved in the second 
approximation, in which A decays exponentially as R or X f  co (see $6) .  We further 
remark that (1.5) is a cutoff mode : the x-component of the linear group velocity is 
zero, which implies that the energy transferred from the wavemaker to the cross- 
wave through weak nonlinear interactions remains trapped near the wavemaker (cf. 
Jones 1984). No direct counterpart of the cutoff mode (1.5) exists for the cylindrical 
wavemaker; however, the radial group velocity vanishes at  r = m/k (the caustic 
circle), whence we anticipate that k = O(m/r , )  in (1.4). 

We begin the determination of A(R, T) with a variational formulation of the 
boundary-value problem in $2, following I and extending that calculation to 
incorporate surface tension. We then, in $ 3  and Appendices A and B, develop the 
trial functions for a weakly nonlinear motion that comprises axisymmetric motion a t  
the driving frequency 2w, the slowly modulated cross-wave (1.4), and the self- 
interaction of this cross-wave, and calculate the average Lagrangian in $4 and 
Appendix C. In  $5,  we obtain the evolution equation and boundary conditions for 
A(R, T) and incorporate weak, linear damping. This evolution equation, which differs 
from the cubic Schrodinger equation in the presence of a factor R-l in the cubic term, 
admits a solution A = 0 that corresponds to axisymmetric motion and loses stability 
to steady cross-wave motion a t  the threshold (see $6) 

E = P-’(y&)i, 0 = W k ,  (1.6a, b )  

where i y  is the ratio of the group velocity to the phase velocity for a plane wave of 
frequency w ,  6 is the damping ratio for a free wave of frequency w ,  and P is a measure 
of the parametric forcing of the cross-wave. In  $7,  we develop the aforementioned 
equivalence between the cylindrical and spherical wavemakers for kr, % 1 and show 
that P - kr, and that the wavenumber at which a cross-wave of azimuthal 
wavenumber m is most easily excited is given by 

kr, = m + O(mt). (1.7) 

We compare the theory with the experiments of TI0 in $8 on the assumption that 
the surface is fully contaminated (as is typical for laboratory experiments in the 
absence of rather special precautions ; TI0 do not report damping measurements). 
The condition (1.7),  which implies that cross-wave excitation is most efficient at (or 
near) that wavenumber for which the caustic circle (or, equivalently, the turning 
point of Bessel’s equation) is at the wavemaker (as in I), is consistent with TIO’s 
data. The comparison of (1.6) with TIO’s data is less satisfactory in that the theory 
underestimates the observed transition amplitudes by an order of magnitude. 
Plausible reasons for this discrepancy are the presence of nonlinear effects at the 
contact line and ‘undersurface flows’ (Taneda 1991) that are not comprehended by 
the theoretical model (note that 0.16 < 6 < 0.82 for TIO’s data, see figure 3). 

Our formulation provides the basis for the determination of the cross-wave domain 
above the threshold, but, without better agreement between our predicted threshold 
and observation, we rest content with the construction (in $6) of an approximation 
to A just above the threshold. 
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2. Variational formulation 
Luke's (1967) Lagrangian, augmented by the capillary energy, is given by 

L = -J/J[$,+t(V$)2+p]dV-T SI ( r - I ) W ,  

where $ is the velocity potential, I ;  is the free-surface displacement, 

r = [ 1 + (VI;)"3', (2.2) 

the first integral is over the periphractic volume bounded by the free surface and the 
wavemaker, and the second integral is over the free surface. An equivalent form, 
which follows from (2.1) through Green's theorem, the assumption that the temporal 
average (r$$,)  vanishes as r t  00, and partial integration with respect to t ,  is [cf. I 
( 2 . 7 ~  

+ [$($,-VX.V$-2Xt) -gZ2Xzlr-r,+XdJK (2.3) ss 
where the three integrals are over the volume, the free surface, and the wavemaker. 

The governing equations for $ and I;, obtained by requiring L (2.1) to be stationary 
with respect to independent variations 64 and &I; in the cylindrical polar coordinates 
( r ,  $, 4, are 

V 2 # = 0  ( r , + X < r < m ,  0 < $ < 2 x ,  - O O < Z < ~ ) ,  (2.4) 
$ z =  I;t+V$-VI;, $t+t(V$)2+gI;= TV.(T1VI;)  ( z =  I;) ,  (2.5a, b)  

TC, = 0, $, = xt+V$*Vx ( r  = T ~ + X ) ,  ( 2 . 6 ~ ~  b)  

together with appropriate radiation and null conditions and the requirement that # 
and I; be periodic in $, The variation 6L differs from that for the gravity-wave 
problem by 

T( r - I ) rd rd$  = -T  ( 2 . 7 ~ )  

(2.7b) 

The first integral in (2.7 b)  contributes to the free-surface condition (2.5b). The second 
integral must vanish, which implies either (2.6a), the natural contact-line condition 
for the variational principle, or the constraint fl = 0, which may be more realistic for 
some configurations (cf. Benjamin & Scott 1979). 

3. Trial functions 
Proceeding as in I$3, but with provision for a slow radial variation, we pose the 

trial functions in the dimensionless forms (the scaling anticipates the form of the 
average Lagrangian) 

( k 2 1 4  $ = &1+4$0 + $11) + 0(&7 (3 .1~ )  

and kI; = &I + a 0  + Cll )  + O ( 4 ,  (3 . lb)  
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where: ($o, co) represent the axisymmetric response to the wavemaker, [J 
represent the linear approximation to the cross-wave, and ($,,, ell) represent the self- 
interaction of the cross-wave ; 

$0 = $0(6,p7 c0 = cO(p7 $1 = $1(6, P, $, e ;R ,  7 ) ,  el = clb, $ 9  e ; R , T ) 7  

(3.2 a d )  

6~ kz, p = kr, 6 = wt,  R = 2ekr, T = c2wt; (3.3 a-e) 

and similarly for $11 and ell, where 

$ 0 ,  $1 and $11 satisfy 

and appropriate radiation or null conditions as p t 00 ; $o, co, #1 and el satisfy 

$nc = L o ,  $ n e + A C n  = 0 (5 = O ) ,  (3.5a, b)  

ACnp = 0, $np = d o n i s  (p = PI), 2 =,f(E)sin28; (3.6a-c) 

$11 and c,, satisfy 

$nt-Sne  = - $ l & c 1 + v $ 1 ’ v ~ 1 7  $lw+& = -$1etC1-W$J2 (5 = 017 
(3.7a, b)  

X1lp = 09 Alp = 0 (P = P1) ; (3.8a, b)  

Son is the Kronecker delta, V now (and subsequently) is the dimensionless (with 
respect to l/k) gradient operator, and 

A = (1  + A ) - l ( l  -Ad), d = p-1QPp+p-2,$. (3.9a, b)  

We choose the solution of (3.4)-(3.63) for n = 1 (the cross-wave) in the form 

[$1, C1l = 2; Re {[ - ie5, 11 A (R ,7 )  e-”? F,&, pl) cos &, (3.10) 

where A is a slowly varying, complex amplitude, m is the azimuthal wavenumber, 
and 

( 3 . 1 1 ~ )  

(3.11 b )  

The basic solution of (3.4)-(3.63) obtained by neglecting the slow variation of A with 
R is a standing wave (cf. I (3.2)) that does not satisfy a radiation condition for 
p t co and has infinite energy 

( Jpy IFmI2p dp is divergent . 1 
However, allowance for the slow decay of A implies evanescence of the cross-wave at  
infinity and a finite energy if 

J;lAl2PdR 

converges, and the solution then is physically acceptable (see $6). 

required for the present development, are given in Appendices A and B. 
The solutions of (3.4)-(3.8) for [$o,co] and [$ll,cll], which are not explicitly 
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4. Average Lagrangian 
We now substitute the trial functions (3.1) into the Lagrangian (2.3), expand the 

integrands in the free-surface and wavemaker integrals about 6 = 0 and p = pl, 
respectively, separate out Lo, the Lagrangian for axisymmetric motion (which, by 
definition, is independent of A ) ,  and average (indicated by ( )) over the fast time 0 
to obtain the dimensionless average Lagrangian 

= 2 ( k 5 p 2 ) ( ~ - ~ ~ )  = ~ l + q l l + ~ l , , + o ~ E ~ .  (4.1) 

4, is a quadratic functional of the cross-wave that comprises all derivatives (in the 
Lagrangian) with respect to the slow variables R and 7 and is given by (Appendix C) 

ql = Re[ [ i ~ A ~ + B A A - ( ~ ) A R A R ] w d R ,  1+3A - 

R ,  

where A is the complex conjugate of A, R, = 2~p,, 

and 

q,,, which is linear in the axisymmetric wave and quadratic in the cross-wave, 
represents the axisymmetric-cross-wave interaction and is given by (Appendix C) 

(4.5a) 

A, = (1  + ~ ) - l ( i  +ha;), (4.6) 

A ,  = A(&, 7), and SP, is the complex amplitude of q50 (see Appendix A and $7). The 
operator i( 1 +A;,)  a; has the limiting forms a; for A 4 0 and i( 1 + a;) for A t 00 and 
could be approximated by a bilinear (in A )  interpolation between these limits. q,,, 
is a quartic functional that represents the self-interaction of the cross-wave and is 
given by (Appendix C) 

(4.7) 

where the real constants Q and qr are given by (C 14). 
We proceed on the hypothesis that (see $6) 

A = O(e-KR) (R f a), K = 0(1), ReK > 0. (4.8 a+) 

Substituting (3.11 a) into (4.4) and invoking the pymptotic approximations to Jm(p) 
and Y,(p) and 2p = R / E ,  we obtain 

t Note that /3 is redefined by (5 .6b)  in (5.7) et seq. 
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It then follows from Riemann’s lemma that (4.2) may be approximated by 

(4.10) 

Combining (4.4), (4.7) and (4.10) in (4.1), we obtain 

where 
1 +3h YE- 
1 + A  

(4.12) 

is twice the ratio of the group velocity to the phase velocity for a wave of frequency 
0. 

5. Evolution equations 
The evolution equations for A and A follow from Hamilton’s principle in the form 

S 9’dT=0. (5.1) I 
Substituting (4.11) into (5.1)’ carrying out the variation with respect to A7 and 
invoking the null condition at R = a, we obtain 

yARR + iA, +PA + QR-lAA’ = 0 (5.2) 

and yAR+iPA+qrAA2=0 ( R = R , ) ,  A+O ( R T w ) .  ( 5 . 3 ~ ’  b )  

We remark that (5.2) differs from the cubic Schrodinger equation (which governs 
progressive cross-waves in a rectangular wave tank) only in the presence of the factor 
R-l in the cubic term. We also remark that, in contrast to cross-waves in a 
rectangular wave tank, the boundary condition at the wavemaker ( 5 . 3 ~ )  is 
nonlinear. 

The cross-wave representation (3.10) rests on the assumption of a perfect fluid. We 
incorporate weak dissipation through the transformation (which follows directly 
from the necessary form of the evolution equation for any linear oscillator near 
resonance; cf. I $ 4 )  

A,+A,+aA, a = S/s2, (5.4u, b )  

where 6 is the damping ratio for the cross-wave (a  is the damping ratio on the scale 
of 7). Linear damping presumably is a consequence of viscous dissipation at the free 
surface (see $8).  Nonlinear viscous damping is negligible in the present approxi- 
mation, but nonlinear radiation damping associated with the self-interaction 
solution (d,,, can be significant, just as for parametrically excited edge waves (cf. 
Miles 1990), and may be incorporated by replacing qr by q = qr +iq, (see Appendix D) 
in ( 5 . 3 ~ ) .  

We anticipate (see $ 7 )  that P is real in the present approximation, although, if it 
were not, - iargP could be absorbed in argA and P replaced by IPI. We then may 
re-scale according to 

R = ( Y / w L  7 = ( Y / m  T, b , B )  = (P2/Y)(oi,P), ( Q , q )  = P(0,4)’ (5.5u4) 
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(5.6a, b)  

and transform (5.2)-(5.4) to 

A,, + iA, + (p+ ia) A +QX-’AA~ = o (5.7) 

and A,+iA+BAA2 = 0 (X =X1), A + o  (Xt  co), (5.8a, b) 
in which Q is real and 4 is complex. 

6. Linear eigenvalue problem 
Neglecting the cubic terms in (5.7) and ( 5 . 8 ~ )  and positing 

A(X, T) = F(X) eaT, (6- 1)  

where (r is real, we obtain the linear eigenvalue problem 

and 

F x x + [ p + i ( a + ~ ) ] P  = 0 (6.2) 

F,+iF=O (X=X,),  F-+O ( X f w ) .  (6.3a, b) 

The solution of (6.2) and (6.3), normalized t o  
Lichter & Bernoff 1988; Miles & Becker 19881 

= 1 at X = X,, is given by [cf. 

(6.4) Fo = exp [i($ + id) - K(X-X,)] 

and (ro = (1 - p ” ) L X ,  (6.5) 
where K = e-u = 2 4  [ ( 1 - p)h - i( 1 + p)’], 0 = 4 cos-’( - p) (0 c 0 < in) (6.6 a, b)  

(0 no longer stands for wt). 
It follows from the preceding paragraph that the directly forced axisymmetric 

motion (for which P = 0) is stable for all p if a > 1 or for p” < 1 -a2 if a < 1 and 
bifurcates to a parametrically forced cross-wave at 

~ = k ( ~ - a z ) ;  ( a c l ) ,  A = O .  (6.7a, b) 

The cross-wave threshold is given by 

a =  1, p = o ,  (6.8a, b)  

which, through (5.6), are equivalent to (1.6a, b) .  
Whether the concentric-cross-wave bifurcation for a f 1, p + 0 and A + 0 is 

subcritical or supercritical could be determined by a Galerkin or centre-manifold 
projection based on Fo (cf. Lichter & Bernoff 1988), but the analysis, which is 
complicated by the cubic term in the boundary condition (5.8a), is rather involved 
and does not appear to be worth developing in the absence of better agreement 
between the present threshold prediction and experiment. Still, it is worth 
emphasizing that the hysteresis in TIO’s data implies a subcritical bifurcation. 

The solution of (5.7) and (5.8) for a stationary cross-wave just a$ove threshold 
may be approximated by (cf. Miles & Becker 1988) 

A =AFo(X), A = 0 - 
(12a)’ 

(6.9a, b )  
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where A is a complex constant. The cross-wave energy, as calculated from (1.4) and 
equality between the mean potential and kinetic energies, is given by (after factoring 
out the fluid density) 

( 6 . 1 0 ~ )  

= 2-t(g+Tk2)k-4(y/P)lA12 (bz 4 l) ,  (6.10b) 

where the reduction of ( 6 . 1 0 ~ )  to (6.10b) follows that of (4.2)-(4.11). We conclude, 
as anticipated in $3, that the cross-wave has finite energy. 

7. Spherical wavemaker 

the vertical oscillation 
We now consider a spherical wavemaker of radius rl, the centre of which executes 

z = -asin2wt, (7.1) 

on the assumption that kr, = p1 B 1,  A. The asymptotic approximation to the 
axisymmetric potential in p, 5 = O(p,), obtained by approximating the free-surface 
condition (cf. (3.5)) 

by #,, = 0 (cf. Ursell 1964; Rhodes-Robinson 1971a), then is given by 

4 0 6  = - #oee = 4#0 (7.2) 

(7.3) 

where, here and throughout this section, - implies an asymptotic approximation 
within an error factor of 1 + O( l/p, Alp:) .  Equating #of at p = p1 to 2f(5) cos 28 [cf. 
(3.6b, c)], we obtain 

for the radial displacement function of the equivalent cylindrical wavemaker. We 
note that 

#o - p: 6(p2 + Ez)-; cos 28 @,, cos 28, 

f(5) - -#P4:5(P;+52)-t (7.4) 

f,, =0.43 at 5/pl = - 4  and fd5=&l ,  

which reflects the equality between the volumetric displacements of the sphere and 
equivalent cylinder. 

L 
Substituting Q0 and f from (7.3) and (7.4) into (4.5b), we obtain 

The last term is negligible in the present approximation, and the integral may be 
evaluated analytically (Luke 1962, $ 11.2(20)) t o  obtain 

The wavenumber k, and hence p1 = krl, at the threshold is determined by w = wk 
(1.6b), while m is determined by the threshold condition that the dimensionless 
forcing amplitude B ( 1 . 6 ~ )  be a minimum or, equivalently, that P be a maximum. 
TIO’s experimental data, the numerical results in I, and the discussion following 
( 1.5) all suggest that this maximum occurs near the turning point, p1 = m, of Bessel’s 
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FIGURE 1. Plp, us. p1 where Plp, is given by (7.6) and m = (15,16,. . . ,20). 
Pl 

equation for J,(p,) and Ym(pl), and an asymptotic approximation based on this 
hypothesis yields 

m/p, = 1 +o(p;$), ( ~ / p , )  = 1 + ~ ( p ; % ) .  (7.7a, b )  

Numerical plots of P / p ,  vs. p1 (7.6) for m = (15,16, . . . , 20 )  are shown in figure 1.  The 
maxima of P / p ,  for m = (4,8,20) are (1.01,1.06,1.09) and occur a t  p1 = (3.70,7.46, 
19.07). 

8. Comparison with experiment 
T I 0  measured the transition amplitudes a t  which the directly forced, axi- 

symmetric wave lost stability to the radial cross-wave and vice versa for spherical 
wavemakers (submerged to their equators) of four different diameters (2r, = 3,4 ,5 ,  
6 cm) and forcing frequencies ranging from 1&100 Hz. They also reported the 
observed azimuthal wavenumber m for these experiments. Using the known forcing 
frequency, TI0 estimated the radial wavenumber k from (1.3) with T = 74 dynes/cm 
and concluded that m - 1 .2kr, over the range of their data. Figure 2 (a )  presents kr, 
vs. m for TIO’s data with T = 74 dynes/cm. Fitting these data to a straight line, we 
find 

kr, = (0.85f0.01) m- (0.02 f0.17),  (8.1) 

in agreement with TIO. However, the water in TIO’s experiments does not appear 
t o  have been specially treated (it was supplied from the well in the campus of the 
university), and a more realistic value of surface tension is 50 dynes/cm. Figure 2(b)  
presents kr, us. m for TIO’s data with T = 50 dynes/cm, for which a linear fit yields 

kr, = (0.97 fO.01) m- (0.35k0.19). (8 .2)  

We remark that these values of k are not necessarily resonant wavenumbers, since 
TI0 did not measure resonant frequencies (i.e. they did not determine the frequency, 
wk, at which a cross-wave of fixed azimuthal wavenumber rn is most easily excited) ; 
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u LU JU V L" JU rn m 
FIGURE 2. kr, 0s. m for the experiments of Tatsuno et al. (1969) with (a)  T = 74 dynes/cm (cf. I 
figure 8 b )  and (b)  T = 50 dynes/cm. Horizontal bars indicate uncertainty in the azimuthal 
wavenumber m. ., rl = 1.50 cm; 0,  r, = 2.00 cm; @,rl  = 2.50 cm; 0, rl = 2.99 cm. 
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FIGURE 3. ka 0s. kr, for the experiments of Tatsuno et al. (1969) with T = 50 dynes/cm for (a )  the 
concentric to cross-wave transition and (b )  the cross-wave to concentric transition. m, 
rl = 1.50 cm; 0,  r, = 2.00 cm; 0, r, = 2.50 cm; 0, r ,  = 2.99 cm. 

accordingly, while no quantitative comparison between theoretical and experimental 
resonant wavenumbers is possible, either (7.7 a)  or the numerically determined value 
of p1 at which P (7.6) achieves its maximum with rn fixed (see figure l ) ,  is consistent 
with TIO's data. 

Figure 3 presents TIO's measured transition amplitudes, normalized by 1 /k, 
versus kr, on a log-log graph, where k is estimated by (1 .3)  with T = 50 dynes/cm. 
We find that their data are fitted by 

ka = C*(krJP, (8 .3)  

where p = 0.42 _+ 0.03 and C ,  = 0.76 f 0.05 for the concentric + cross-wave transition 
(figure 3a) and ,u = 0.40 f 0.02 and C ,  = 0.66 f 0.04 for the cross-wave + concentric 
transition (figure 3b) .  For T = 74 dynes/cm, the corresponding values of ,u are 
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0.48 f 0.03 (concentric + cross-wave transition) and 0.46 f 0.02 (cross-wave +. con- 
centric transition), while C, remains essentially unchanged. 

The transition amplitude at  resonance, obtained by setting a = 1 in (5.6a), is given 

ka = (y?~)&’-~. (8.4) 

6 = +k(2v/w)i, (8.5) 

by 

The damping ratio for a fully contaminated surface is given by (see Miles 1967) 

where v is the kinematic viscosity. (It follows from dimensional considerations that 
the viscous damping at the sphere is negligible compared with that at the surface 
film.) 

A representative state reported by T I 0  has 

r,  = 2 cm, w = 70n rad/s, m = 20, p, = 18.46, a = 0.026 cm, 
(T = 50 dynes/cm). 

Assuming that an m = 20 mode is resonantly excited, using (4.12), (8.5) and (7.6) 
to obtain y =  2.6, 6 =  0.02, and P =  1.09krl, and invoking (8.4), we obtain 
a = 0.001 cm, which is an order of magnitude smaller than that observed by TIO. 
For T = 74 dynes/cm, the corresponding values of p l / a  are 16.30/0.002 cm. 

Pursuing the comparison with TIO, we combine (8.4) and (8.5) and invoke 
w2 = Tk3 and P % kr,, to obtain 

ka - C,(kr,)-a, C, = 1.03(Trl)%h. (8.6a, b )  

The difference between the exponents -0.4 in (8.3) and -: in ( 8 . 6 ~ )  suggests that 
the postulated damping mechanism (linear boundary-layer damping beneath an 
inextensible film) implicit in (8.5) differs significantly from that in TIO’s experiments. 
It may be that phenomena such as nonlinear contact-line damping and ‘undersurface 
flows’ (Taneda 1991) that are not comprehended by the present theoretical model are 
responsible for the discrepancy between the predicted and observed transition 
amplitudes. 

Further progress appears to require more detailed experimental data, including, in 
particular, the dependence of the transition amplitude for capillary waves on the 
kinematic surface tension T and the kinematic viscosity v, perhaps for some fluid 
(e.g. n-butyl alcohol or filtered and de-ionized water) that gives a more uniform 
contact line and more reproducible surface conditions than the water used by TIO. 
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(M.7); by the DARPA Univ. Res. Init. under Appl. and Comp. Math. Program 
Contract N00014-86-K-0758 administered by the Office of Naval Research, by a 
grant under the Australian Research Council (J.M.B.) and a NSF Mathematical 
Sciences Postdoctoral Research Fellowship (J. M. B.). 

Appendix A. Cylindrical wavemaker 
The solution of (3.4)-(3.6) for axisymmetric gravity waves (m = h = 0) is obtained 

by Havelock (1929) through a Fourier transformation with respect to the vertical 
coordinate and extended to capillary-gravity waves by Rhodes-Robinson (1971 b )  
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through the development of appropriate Green’s functions. We could adapt the latter 
but instead find it expedient to proceed through a Hankel (Weber) transformation 
with respect to the radial coordinate. 

We introduce complex amplitudes according to 

[#o, C O I  = Re { [ @ ( E ,  P I ,  iZ(P)l e - 9  (A 1 )  
(@ = Go and 2 = Zo) ,  the substitution of which into (3.4)-(3.6) yields 

@ also must vanish at 6 = - 00 and satisfy a radiation condition at p = 00. 
Introducing the Hankel-transform pair 

&(t,Pu) = lp~@(f,P)Fo(pP,pPl)PdP, @ K P )  = l~&(E,,u)Fo(pP,ppl)Pd/L, 

(A 5a, b)  

(A 6) 

where Fo is the Bessel function (3 .11) ,  we transform (A 2)-(A 4) to 

&EE--P2& = 2Pl W P l ,  PPl)f(E) 

(A 7a-c) 1 + hp2 6, = 22, K& = 2 6  (5 = o), K ~ 

l + h  . 

The solution of (A 6) and (A 7) is given by 

Substituting (A 8) into (A 5b) and invoking (3.11b) for F,, we obtain 

(A 9) 
where the path of integration is indented under the pole at ~p = 4 (p = po) in order to 
satisfy the radiation condition at p = 00. The corresponding result for the free- 
surface displacement, obtained through the substitution of (A 9) into (A 3a) ,  is 

We separate ( A 9 )  into radiated and trapped waves by deforming the path of 
integration for the HF)/Hi2)  component to the positive/negative imaginary axis of 
the complex-p plane. The Hi1) component then contributes both radiated (from the 
pole at ,u = pug) and trapped waves, whereas the HA2) component contributes only a 
trapped wave. The end result is 

+ ’ l: sin (1’5 + u )  f( y ) sin (uy + u )  dy , (A 1 1 )  x 
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where p,, is the real root of 
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p,,(l+Ap:) =4(1+A) 

and 
u =  tan-'[ v( 1 - Av2) 1. 

4 ( l+h)  

Setting h = 0 in (A 11)-(A 13), we recover Havelock's (1929) result. 

Appendix B. The self-interaction problem 

Substituting (3.10) into (3.7), we transform the free-surface conditions to 
We consider the solution of Laplace's equation, (3.4), subject to (3.7) and (3.8). 

q5s-& = Re{iA29e-2i8), q50+A6 = #A(29+Re{A2&'e-2i 7 (5=0), 
(B la ,  b )  

(B 2% b)  

F m  = %m(p, $1 Fm(p,p,) cosm$, (B 2 4  

andFm(p,pl) is given by (3.11). The solution has the form (in which ( 5 )  is a non-zero, 
temporal mean displacement) 

where q5 = q511, 6 = ell, A = A(R, 7), 

9 = Fk - (VFm)2, &' = ;Fk +$(v%m)2, 

[q5, 5-(C)l = Re {A2 [i@'(E,p, $), Z(p, $)I e-2is>, (0 = ;IAI2A-'9(p, $1, 
(B 3% b )  

V2@ = 0, (B 4) 

Qi,+2z = 9, 2@+/12 = 2fe (5 = O ) ,  (B 5a, b )  

AZ, = 0, @, = o  (p  = P I ) .  (B 6a,  b)  

the substitution of which into (3.4), (B 1) and (3.8) yields 

Proceeding as in Appendix A, we introduce the transform pair (cf. (A 5)) 

6 n  = I ~ @ F n ( ~ p , / L P I ) c o s n $ p d ~ d ~ ,  @ = ~ ( ~ ) ~ o ~ ~ n ~ n ( p p , W l ) ~ d p c o s n ~ ,  

(B 7% b)  
where the summation is over n = 0 and 2m, to obtain 

where K = ~ ( p )  is given by (A 7c) .  
It follows from integration by parts and (3.1 1 a )  that 

(VFm)2Fncosn$pdpd$ = (1 -h2 )  Fncosn$pdpd$ (n = 0,2m), 

where 
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Substituting (B 10) into (B 8) and invoking (B 7 b )  and its counterpart for 2, we 
obtain 

PdP 
W 

[@> 21 = ac cos n+ s, [ (W2+P2 - 8) &, 411- 2P2 .x,(Pu) Fn(PP, PPl) - p p  

(B 12) 
where the path of integration passes under the pole at  = p0, determined by 
K,U = 4, in order to satisfy the radiation condition a t  p = 00. The asymptotic 
approximation for p t  00 is dominated by the contribution of this pole and the 
neighbourhood of p = 0 and is given by 

Appendix C. Reduction of the average Lagrangian 
The substitution of the trial functions (3.1) into the Lagrangian (2.3), followed by 

the expansion of the integrands in the free-surface and wavemaker integrals about 
f l  = 0 and p = pl, respectively, averaging over 8, and the subdivision (4.1), yields 

%11 = IJ<$ll 500 + $o 5110 - 2( 1 + w1 ( 5 0  511 + AV50 - V L l )  + $Of 5,510 + $l&O 51 )e 

q 1 1 1  = JTW1 Cll0- (1 + 4-l G l +  A(V51J2 -$W7Cl)*I + $115 51 510 

+ $1[ - $Off 51 - $166 5 0  + W o -  v51+ V$l.V501> P dP d+ 

+ ~ - ~ l l ~ ~ + $ l ~ $ l p p ~ - $ l ~ ~ f ~ ~  Pld$dfl, (C 2) SS 
and 

+$1&51 511)0++41~& 510+$1~-41~~511-$11ff51-~@16ffG 

+ k-1 V I f .  v51 +V#l.V511+ V411.V511~ PdPd+9 (C 3) 
where the integrands in the free-surface and wavemaker integrals are projected onto 
6 = 0 and p = pl, respectively, and the corresponding limits of integration for p and 
6 are (pl, 00)  and ( - 00, 0). The contributions of the end points r - T, = x and z = 5 in 
(2.3) to this projection cancel in the present approximation (as in I).  

Integrating (C 1 )  by parts with the aid of the identities 
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and similarly for cl, and 
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and invoking (cl/icl) = -(& $1,) = ($1[1,) and (4.3) for p, we obtain 

-JJ(61c1,+~$15,.)PdRd$~ (c 5,  

which reduces to (4.2) through the substitution of $1 from (3.10). 

from Green's theorem, (3.6a), ( 3 . 8 ~ )  and (3.9) that 
Turning to gll, we consider first the contributions of $11 and cll in (C 2). It follows 

(1  + A1-1 J[(C0 511 + ~V5O.VYll) dtJ = JJ(Cl1 4 0 )  u 7  (C 6) 

where, here and subsequently, dS = p dp d$. We transform the integral of ( - $11 i,) 
according to 

where (C 7 a )  follows from $11, = 0 (3.8b) and $op = i43 .66)  on p = pl ,  (C 7 b )  follows 
from (C 7 a )  through Green's theorem and the hypothesis that 

I, = lim J J ($0 Alp - $11 $0,) PdP d$ = 0,  (C 8) 
P t m  

and (C 8) follows from the radiation conditions satisfied by $o and $11 (see (A 11) and 
(B 13)). Combining (C 6) and (C 7 b )  with the first two terms in the integrand of (C 2) 
and invoking (3.5a, b ) ,  ( 3 . 7 ~ )  and the identity (ab , )  = - ( a , b ) ,  we obtain 

($11 ~ 0 8 ~ ~ 0 ~ l 1 8 ~ 2 ~ 1 1 / i ~ 0 ~ ~ 0 ~ 1 1 ~ ~ ~ 1 1 ~ 0 ~ ~  

the substitution of which into (C 2) yields 
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where (C lob) follows from (C 10a) with the aid of Green's theorem and (3.4)-(3.6), 
and A, is defined by (4.6). Substituting q5, from (3.10) into (C lob) and invoking (A 1) 
and (3.6c), we obtain (4.5~). 

The reduction of ~:,,, (C 3) is rather lengthy and involves repeated applications of 
Green's theorem, integration by parts with respect to 8, and simplification with the 
aid of (3.4) for q5, and $,,, (3.5a, b )  and (3.6a, b)  for q5, and C,, and (3.7a, b)  and 
(3.8a, b)  for q511 and Cll t o  obtain 

We remark that the coefficients of q5,, and C,, in (C 11) are equal, respectively, to the 
right-hand sides of (B la) and (B lb). Substituting q51 and [, from (3.10) and q511 and 
Cll from (B 3) into (C ll), we obtain 

g,,, = t R e ( J / l A 1 4 ~ + ~ Z + ~ 9 n - 1 9 - 9 2 +  

(C 12) 
where 9 and X are given by (B 2) and Q, and 2 are given by (B 12). 

Neglecting the oscillatory component of the integrand for R = 0(1), as in the 
approximation of gl by (4.10), and approximating A by A ,  for p = O(p,), we obtain 
the asymptotic approximation 

(C 13) 
dR 

I A I 4 ~ + ~ r l A i l 4 + O ( ~ ) ,  

where (C 14a) 

(C 14b) 
and we have assumed that po =I= 2. If po = 2 the radiated components of Q, and 2, as 
approximated by (B 13), resonate with 9 and &' (which reflects a Wilton (1915) 
resonance between the cross-wave and its second harmonic), and the integrand in 
(C 12) comprises a non-oscillatory (in p )  component that is O(p-i), in consequence of 
which the integral diverges. This resonance occurs for A = & and required a re-scaling 
for which q51 and q5,, have the same order of magnitude. 

Appendix D. Radiation damping 
It follows from (B 13) that the disturbance described by (B 1) radiates energy a t  

O(A4), and it can be shown (cf. Miles 1990) that the corresponding radiation damping 
may be incorporated in the evolution equations by allowing q to be complex in (5.3a), 
with the imaginary part (cf. (C 14b)) 

qi = Im SJ/(%Q, + XZ) d ~ ,  (D 1) 

where ( 9 , X )  and (Q,,Z) are given by (B 2) and (B 12). 
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The imaginary part of 9@ + S Z  is derived entirely from the indentation of the 
path of integration in (B 12) under the pole at p = po and is given by 
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where n is summed over 0 and 2m. Combining (B 2) and (D 2) in (D I )  and carrying 
out the integration over S (ds = pdpd+) with the aid of (B 9) and (B l l ) ,  we obtain 

(D 3) 1 2  2 1  2 
qi = F rUo(@o+rUo-2)2(1+4 (1  + 3 ~ ~ 0 ) - 1 [ ~ ~ ( ~ 0 ) + ~ ~ ~ , ( ~ 0 ) l .  




